
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

New heuristic techniques for general
mixed-integer programs

Robert Carr, Sandia National Laboratories
Jonathan Eckstein, Rutgers

Cynthia Phillips, Sandia National Laboratories
Jean-Paul Watson, Sandia National Laboratories

Slide 2

(Mixed) Integer Programming (IP)

Min
Subject to:

• Can also have inequalities in either direction (slack variables):

• IP (easily) expresses any NP-complete problem

cTx

Ax = b
l ≤ x ≤ u
x = (xI , xC)
xI ∈ Z n (integer values)
xC ∈ Qn (rational values)

ai
Tx ≤ bi ⇒ ai

T x + si = bi , si ≥ 0

Slide 3

Linear programming (LP) relaxation of an IP

Min
Subject to:

• LP can be solved efficiently (in theory and practice)
• LP optimal gives lower bound

cTx

Ax = b
l ≤ x ≤ u
x = (xI , xC)
xI ∈ Z n (integer values)
xC ∈ Qn (rational values)

Slide 4

DOE/Science MIP Applications (Small Sample)

Defense program applications:
• Logistics

– Capacity planning, scheduling, workforce planning, constrained vehicle
routing, fleet planning

• Site security
• Tools for high-performance computing (scheduling, node allocation, domain

decomposition, meshing)
Science
• Bioinformatics: protein structure prediction/comparison
• Wireless sensor management
• New applications (with Ali Pinar, LBNL)

– Scheduling telescope time (eg. For supernovae observations)
– Groundwater monitoring
– Analysis of particle behaviors in supercolliders

Slide 5

Simple Example: Scheduling telescope

• A number of projects are sharing a telescope
– Looking for different types of objects
– Sky regions observed multiple times
– Quality of a pair of observations depends on time gap

• xij = 1 if observe region i on night j
• Zijkp = 1 if project p uses an observation of region i on nights j and k

• vgp = value to project p for observing with a gap of g
• n = # of observations/night
• Vp = minimum value for project p

Slide 6

Simple example: Scheduling telescope

max vk− j ,pzijkp
ijkp
∑

st

xijij
∑ ≤ n maximum observations/night

zikjp ≤ xik∀i,k, j, p
zikjp ≤ x jk∀i,k, j, p

vk− j,pzijkp
ijk
∑ ≥ Vp∀p miminum quality

zijkp ≤1
(i, j,k)∈F
∑ ∀p, overlap sets F (no overlaping intervals)

Slide 7

Solution Options for Integer Programming

• Commercial codes (ILOG’s cplex)

– Good and getting better

– Expensive

– Serial (or modest SMP)
• Free serial codes (ABACUS, MINTO, BCP)
• Modest-level parallel codes (Symphony)
• Grid parallelism (FATCOP)
• In development: ALPS/BiCePs/BLIS

• Massive parallelism: PICO (Parallel Integer and Combinatorial Optimizer)

Note: Parallel B&B for simple bounding: PUBB, BoB/BOB++, PPBB-lib, Mallba,
Zram

Slide 8

Solving Integer Programs: Branch and Bound

• Lower bound: LP relaxation

 x k = 0 x k = 1

 x i = 1

 x j = 1 x j = 0

 x i = 0

Root Problem = original

fathomed infeasible

Slide 9

PICO Parallel IP Solver: Two Phases

• Parallel subproblem phase
– There are plenty of subproblems compared to # processors

• Ramp up (eg. 1 subproblem, 10000 processors)
– Parallel processing of single problem

• Gradients
• Cuts
• LP bounds

– Incumbent heuristics (looking for a good feasible solution)

Slide 10

Value of a Good Feasible Solution Found Early

• Faster pruning
• Having something to say if the computation stops early

 x k = 0 x k = 1

 x i = 1

 x j = 1 x j = 0

 x i = 0

Root Problem = original

fathomed infeasible

Slide 11

General-Purpose Incumbent Heurstics

• Randomized rounding
• Feasibility pump
• Nediak-Eckstein
• Fractional Decomposition Tree

Slide 12

Randomized Rounding

Binary decision variables. LP relaxation x*

• Simplest form: treat LP relaxation 0 ≤ x* ≤ 1 probability

• Select each x* independently with probability x*

• For parallel IP, in early computation, many processors can do this
independently.

• Resulting vector x is
– Integer by construction
– Almost certainly infeasible for linear constraints Ax = b.

• Exception: covering problems [Raghavan, Thompson]
• Fast way to find something when (almost) everything is feasible

Slide 13

Feasibility Pump (Fischetti, Glover, Lodi)

Basic algorithm:
1. Solve LP to obtain x*
2. Round (arithmetically) x* to
3. While is not feasible obtain new x* from this LP:

and round x to again

˜ x
˜ x

min yi
i

∑
s.t
yi ≥ xi − ˜ x i
yi ≥ ˜ x i − xi

Ax = b

˜ x

Slide 14

Feasibility Pump Improvements

• Gap is

• Improvement is relative to initial feasibility pump
• Tested with problems from miplib2003

• Round x* multiple times, take best (most feasible) of k trials
– 23.7% gap improvement for k = 30
– Running time increase factor of k, but fully parallelizable

• Iterated local search: perturb and redo the feasibility pump
– For k=30 iterations, gap improvement of 31.2%
– Runtime increase of k, not parallelizable individually, but can

do multiple independent iterated searches.
• Good idea to round randomly for x* components near .5

value of first feasible solution
optimal (or best known)

Slide 15

Eckstein-Nediak Heuristic

• Parallelizable, General 0-1 MIPs

Uses a merit function ψ(x)
• motivated by LØkkentangen and Glover, 1998
• ψ(x) = 0 if vector x is integer feasible
• ψ(x) > 0 if an integer variable is fractional
• ψ(x) is differentiable and strictly concave

– Important properties, not enforced by LØkkentangen and Glover

Goals:
• Reduce ψ(x) to 0
• Obey linear constraints (Ax ≤ b) and variable bounds
• Minimize increase in MIP objective (cTx)

Slide 16

Parallel MIP Heuristic Merit Function

We define a separate merit function φj(xj) for each binary variable xj

Same properties:
• φj(0) = φj(1) = 0
• φj(x) > 0 for 0 < x < 1
• Differentiable, strictly convex

Total merit is the sum of the individual merits (retains properties)

ψ x()= φ j
j ∈I
∑ x j()

Slide 17

Merit Function for a variable xj

Specifically, for

φα x()=1−

x −α
α

⎛
⎝
⎜

⎞
⎠
⎟

2

 for x ≤ α

x −α
1−α

⎛
⎝
⎜

⎞
⎠
⎟

2

 for x > α

⎧

⎨

⎪
⎪

⎩

⎪
⎪

α ∈ 0,1()

Slide 18

Nediak-Eckstein MIP heuristic

New objective function ∇ψ(x*) + wc, where
• x* is the current point (such as LP optimal)
• c is the original IP objective function
• w is a weighting factor (IP objective vs. integrality)
This is the Sum/Frank-Wolfe approach

Use normal LP simplex pivots to improve the new objective
• Adjust the objective at each step (for new x*)
• Provably finds a local optimum (via concavity)

If the local optimum x has ψ(x) > 0, can add Gomory cuts and
continue.

Slide 19

Nediak-Eckstein MIP Heuristic

• Processors can use different merit functions
– Random values of α for each variable

• Processors can also fix one fractional variable
– For example, if binary variable xj is .4. Set to 0 or 1 in

heuristic.
• Combinations of the two types of variation

– Fixing variables that have a good history of improving
integrality

Slide 20

LP-Relaxation-Based Approximation for IP

• Compute LP relaxation (lower bound).
• Common technique:

– Use structural information from LP solution to find feasible IP
solution (use parallelism if possible)

– Bound quality using LP bound
• Integrality gap = maxI(IP (I))/(LP(I))

– Taken over all instances I (settings of class parameters: c,b)
– Integrality gap is unbounded (infinite) if

• LP(I) = 0 or
• IP is infeasible when LP isn’t

• This technique cannot prove anything better than integrality gap

Slide 21

Finding an Approximate solution: Convex Decomposition

x* = feasible solution to the LP with cutting planes
Find feasible integer solutions

Convex combination:

• Implies one of the Si has cost
at most ρ times the LP optimal

gradient

LP

ρ* LP

Integer polytope

LP opt ≠ 0

0 ≤ λi ≤1; λi
i

∑ =1

S0,S1,L,Sm such that λi∑ Si ≤ ρx *

Slide 22

Key Theorem (Carr, Vempala)

• Recall integrality gap =

• Let x* be the optimal LP solution to the LP relaxation for an IP.
There exists a convex decomposition dominated by ρx* if and only if
the integrality gap is ρ for finite ρ.

value of best integer solution
value of LP relaxation

S0,S1,L,Sm such that λi∑ Si ≤ ρx *

0 ≤ λi ≤1; λi
i

∑ =1

Slide 23

Fractional Decomposition Tree - Overview

• Previous decomposition results were problem-specific
The FDT method applies decomposition to any integer program.
• Will succeed if the problem class has finite integrality gap!

– Success = find feasible solution
– No quality guarantee

• Grows a tree-like branch and bound (B&B) except
– Preserves structure of LP relaxation (vs. preserving objective

function in B&B)
– Limits the tree to polynomial size (vs. exponential for B&B)

Slide 24

FDTs for 0-1 IPs

• Order the variables that are fractional in the LP optimal x*
• At each level of the tree, one more variable is forced integral
• Use LP to pack the children into the parent optimally

– Preserve structure of the solution

x1, x2 ∈ 0,1{ }

x1 ∈ 0,1{ }

.…

Integer solutions

x*

Slide 25

LP to create the children

• To create children of the root from x* (LPC):

• Children of the root have solutions:

• Solutions are feasible, have first variable integral, and decompose
x* with value .

max λ0 + λ1

st Ay 0 ≥ bλ0

 Ay1 ≥ bλ1

 0 ≤ y 0 ≤ λ0 •1
 0 ≤ y1 ≤ λ1 •1
 y1

0 = 0; y1
1 = λ1

 y 0 + y1 ≤ x*

 λ0,λ1 ≥ 0
x 0* =

y 0

λ0

 and x1* =
y1

λ1

ρ =
1

λ0 + λ1

Slide 26

LPC is feasible in general

• For finite integrality gap, there exists

• Let be the members of Si with x1=1
be the members of Si with x1=0

S0,S1,L,Sm such that λi∑ Si ≤ ρx *

Si
(1)

Si
(0)

λi∑ Si
(1) ≤ ρx *

λ j∑ S j
(0) ≤ ρx *

Slide 27

Pruning the tree

• Let n be the number of fractional variables in x*
• If any level of the tree has more than n nodes, we prune the tree,

keeping only the best n partially integral solutions.
• This LP (LPP) picks the n survivors that best pack into the root

solution x* and calculates the convex combination parameters.

• Has only n nonzeros because there are only n constraints

max λi

i
∑

st λix i

i
∑ ≤ x*

 0 ≤ λi ≤1

Slide 28

FDT heuristic

• Some of the decompositions will have only one child.
• If any of the xi are integral, no further decomposition. They can

participate in LPP (travel to next “level” logically).
• If this were to run n levels, all leaves would be feasible integral

solutions.
• Running to the end level could be very expensive

– Combine this with randomized rounding or other heuristics

Slide 29

Parallelizing FDT

• Child decompositions on each level are independent

• Alternatively, can “dive” through the FDT
– Do a child decomposition
– Pick a single child
– Travel a single path to a leaf
– This can fail even when the full computation would not

• Each processor can dive independently

Slide 30

Final remarks

• For important applications, customization is best
– PICO provides tools for each addition of custom incumbent

heuristics
– If using ampl modeling language, ampl variables are available

directly within PICO
• Expect FDT will be the sledgehammer for when nothing else works.

• Key challenge: managing parallel heuristics

